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Abstract

All the devices in synchrotrons and storage rings are placed
at fixed positions. Observations are also made at fixed
positions. Thus, the orbit length is a natural independent
variable, and (arrival) time and energy are canonical vari-
ables. This description is a commonplace for betatron os-
cillations, synchrotron oscillations in a static case, and for
collective beam instabilities. However, the time is usually
used for synchrotron oscillations in a changing magnetic
fields. Also, betatron accelerations are sometimes ignored.
We develop a symplectic theory for synchrotron oscilla-
tions which uses the orbit length as an independent variable
and includes betatron acceleration. Since sychrotron os-
cillations are closly connected with transverse coordinates,
we also study synchro-betatron coupling.

1 INTRODUCTION

We develop an orbit theory for circular accelerators us-
ing the orbit length s as an independent variable (s-
description). Chao [1] stressed the difference between a
snap-shot (a picture taken at a fixed time, t-description) ,
and observations at fixed places (s-description). He devel-
oped an orbit theory for collective effects from this point
of view. The equation of betatron oscillations is described
in this way, but synchrotron oscillations are usually studied
by the t-description.

The t-desription has several defects. Firstly, it is diffi-
cult to describe localized natures of rf cavities, etc. We are
forced to use a travelling-wave approximation. A standing-
wave picture, which is more physical, predicts chaotic be-
haviors in synchrotron oscillations when the synchrotron
tune is large [2]. Then, the concept of rf-buckets breaks
down. Also, Piwinski [3] showed in a linear approxima-
tion that synchrotron tunes are different in the travellin-
wave approximations and in the standing-wave treatment.
For a high tune, synchrotron oscillations become unsta-
ble. Further, when we study synchro-betatron coupling,
we are forced to use two independent variables. Also, the
standing-wave picture is necessary to find a resonance con-
dition νx = n + mνs,where νx and νs are betatron and
synchrotron tunes, and n and m are arbitrary integers. In
the travelling-wave picture, only n = 0 effects appear.

These are commonplace in static cases, but are also im-
portant in the case of changing magnetic fields. In this
case, betatron acceleration driven by the changing mag-
netic fields is somtimes neglected, but this must be in-
cluded. Bryant and Johnsen [4] analyzed this point in de-
tail in the t-description.It is interesting to note that Veksler
[5] and McMillan [6] used the s-description. We develop a

symplectic theory for synchrotron oscillations and synchro-
betatron coupling from the viewpoints described above.

2 CANONICAL VARIABLES AND
EQUATIONS OF MOTION

In the s-description, the (arrival) time t and minus the en-
ergy −E are canonical variables. We first make a canon-
ical transformation from t to τ by a relation t = t0 + τ ,
where t0 is the arrival time of the synchronous particle
t0(s) =

∫
ds/v0, v0 the velocity of the synchronous parti-

cle, and τ(s) is the time delay of an arbitrary particle. We
put a subscript 0 to variables of the synchronous particle in
this paper except for β and γ. Then we make the second
canonical transformation from (τ,−E) to (τ,−∆E) by a
relation E = E0 + ∆E, where ∆E is the energy error.

Though the equations of motion can be derived from a
Hamiltonian, we can obtain them from physical consider-
ations if we pay due attentions to canonical natures of the
variables. We describe this simplified approach though the
equations are checked by a Hamiltonian formalism. The
energy equation is

d∆E

ds
= eVδp(s − s0){sinφ − sinφ0} + eḂx, (1)

where eV is the peak energy gain by rf-cavities, φ is the rf
phase, s0 is the position of the rf cavity, δp is the periodic
δ-function, Ḃ is the time derivative of a vertical magnetic
induction, and x is the horizontal coordinate. In this paper,
the dot means a partial or a total derivative with repect to
time. The time equation is derived from simple geometrial
considerations and, after a few steps, we obtain

dτ

ds
=

1
v0

(
x

ρ
− 1

β2γ2

∆E

E0
) (2)

where only linear terms are kept. The pair (x, px) denotes
canonical variables for the transverse motion.

Now, x is decomposed as

x = xβ + D(
∆E

β2E0
− ∆B

B0
) + xco, (3)

where xβ is the coordinate of betatron oscillations, D is the
dispersion function, ρ is the radius of curvature, β is the ve-
locity Lorentz factor, ∆B is the field error and xco denotes
a closed orbit distortion driven by errors. Usually, only
the ∆E/E0 term in Eq.(3) is kept for synchrotron oscilla-
tions, but the ∆B-term is also important for a symplectic
description. Different particles pass through a fixed point s
at different times and feel different magnetic field strength.
Thus,

∆B(to + τ) = ∆B(t0) + Ḃ(t0)τ (4)
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Since ∆B(t0) term does not contain any canonical vari-
able, it only affects a closed orbit, but the Ḃ term is impor-
tant. If this term is neglected, the necessry condition for
symplecticity

∂∆E′

∂∆E
+

∂τ ′

∂τ
= 0 (5)

is not satisfied. In this paper, the primes denote differenti-
ation with respect to s. This condition is also a sufficient
condition for the Louville theorem. The xβ-term shows
a synchro-betatron coupling. We neglect xco because this
does not oscillate and also it is small.

We now express Eq.(3) by a canonical transformation
with a generating function that has old coordinates and new
momenta.

F = F1 + F2 + F3, (6)

where

F1 = pβ{x − D(
∆E

β2E0
− Ḃτ

B0
)},

F2 = xD′p0(
∆E

β2E0
− Ḃτ

B0
),

F3 = −∆Eτ − 1
2
DD′p0(

∆E

β2E0
− Ḃτ

B0
)2.

Here, pβ is a canonical momentum conjugate to xβ and
p0 is the kinetic momentum. This generating function was
first obtained by Morton and Chao[7] with an approxima-
tion D′ = Ḃ = 0. Corsten and Hagedoorn[8] included the
D′-term and the Ḃ-term is now included.

The relations between the old and new variables are
given as

x = xβ + D{ ∆E

β2E0
− Ḃ

B0
(τ + τβ)} (7)

px = pβ + D′p0{
∆E

β2E0
− Ḃ

B0
(τ̄ + τβ)} (8)

∆E = ∆E +
Ḃ

B0
τββ2E0 (9)

τ = τ̄ + τβ (10)

where

τβ =
p0D

′x̄β − p̄βD

β2E0
(11)

The bars indicate the new canonical variables.
The meaning of τβ can be seen by

dτβ

ds
=

xβ

ρv0
(12)

where we neglected the adiabatic change of the parame-
ters, and we used the equation of betatron oscillations and
the defining equation for D. Thus, τβ shows the time delay
due to betatron oscillations. This relation was first found
by Piwinski and Wrulich[9] by a heuristic manner. This
quantity is also known as CP (Central Position) phase in
the theory of cyclotrons. (See the references cited in [8].)

In the present case, we can include not only free betatron
oscillations, but also synchro-betatron coupling. Also, we
see that the eḂxβ term is cancelled when we use ∆E in-
stead of ∆E. Thus, the betatron acceleration by betatron
oscillations is cancelled out: the betatron oscillations affect
only the arrival time in synchrotron oscillations.

Inserting Eqs.(7) to (10) into Eqs.(1) and(2), we obtain
the energy and the time equations expressed by the new
canonical variables. From now on, we omit the bars from
the new variables for the sake of simplicity. Neglecting the
Ḃ2 term, we obtain

d∆E

ds
= eḂD

∆E

β2E0
+eV δp(s−s0){sinφ−sinφ0} (13)

dτ

ds
=

1
v0

{(D

ρ
− 1

γ2
)

∆E

β2E0
− DḂ

ρB
(τ̄ + τβ)} (14)

We note that the coordinates of betatron oscillations xβ is
cancelled out and only τβ term remains. Together with
the corresponding equations for xβ and pβ , we obtain the
equations of motion for synchro-betatron coupling. For the
static case in the s-description and in the standing-wave
picture, the equations are given in [10] though several er-
rors are present in this paper. There it is described that the
standing -wave pictue ( δp-function ) is important to derive
a resonace condition νx = n + mνs.

We now make a brief comment on rf phase angle φ =
φ0 + ∆φ. In the standing-wave picture, the particles feel
an rf-field only at the position of rf-cavities. So, it is natural
to put φ0 = ωrf (t0)t0. Also, we put ∆φ = ωrf (t0)τ to the
first order in τ . Such equations are described in a textbook
by Livingston and Blewett[11] though in the t-description.

Now, we neglect the synchro-betatron coupling and put
τβ = 0. We study pure synchrotron oscillations. We use
a travelling-wave approximation here: The δp-finction is
expanded into a Fourier series and we keep only one har-
monic term with a harmonic nuber h. The phase angle ϕ in
this case is redefined as ϕ = φ−hθ, where θ = s/R and R
is the average radius. We further make a one-turn average
of the quantity < D/ρ >= α, where α is the momentum
compaction factor. Then, we obtain

d∆E

dθ
=

eV

2π
{sinϕ − sinϕ0} +

αḂ

ω0B
∆E (15)

dτ

dθ
=

1
ω0

{η ∆E

β2E0
− α

Ḃ

B0
τ} (16)

where η = α − 1/γ2.
Combining Eqs. (15) and (16), we obtain an equation for

τ
d

dθ
(
ω0β

2E0

η

dτ

dθ
) =

eV

2π
(sinϕ − sinϕ0) (17)

where the second-order term Ḃ2 is consistantly omitted.
We note that the Ḃ terms appear only in the second or
higher order terms. This suggests that we can obtain a cor-
rect equation even in the absence of betatron accelerations,
as analized by Bryant and Johnsen.
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The arrival time at a fixed point has a strict physical sig-
nificance, but people usually use the rf-phase. The canoni-
cal variable conjugate to ∆φ is W (= −∆E/ωrf ). Insert-
ing these variables into Eqs.(15) and (16), combining the
two as before, and neglecting the second and higher order
terms in the adiabaticaly-changing variables, we obtain af-
ter several steps

d

dθ
(
β2E0

hηω0

d∆ϕ

dθ
) =

eV

2πω0
{sin(ϕ0 +∆ϕ)− sinϕ0} (18)

If we put α = 1 (pure bending field) and h = 1,this equa-
tion reduces to McMillan’s one. Also, if we put dθ = ω0dt,
Eq.(18) reduces to the one given by Courant and Snyder.

3 DISCUSSIONS AND CONCLUSIONS

We developed an orbit theory for synchrotron oscillations
and synchro-betatron coupling. We stressed the importance
of a standing-wave picture. The travelling-wave concepts
such as the rf-buckets are approximations. A smooth el-
liptical phase space trajectory is also an approximation. It
consists of a drift (with a small betatron acceleration ) and
a sudden jump in energy by rf-cavities. The trajectory is
polygonal. The standing-wave treatment has revealed the
instability and also a chaotic behavior for high synchrotron
tunes. On the other hand, the travelling-wave approxima-
tion is necessary for analytic works. Even in this case, the
orbit theory is not more complicated than the t-description.

More details including a Hamiltonian formalism will be
described elsewhere.
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