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Abstract 

  We introduce the research status of the beam 
longitudinal instability based on the mode coupling 
theory. After compared the different work we derive the 
Fokker-Planck equation from the equation of particle 
motion, and try to obtain the solution of the distribution 
equation including the potential well distortion. 

1  INTRODUCTION 
  The longitudinal microwave instability, which leads to 
the growth of the bunch length and the increase of energy 
spread of the beam, is one of the main factors that 
determine the ultimate performance of accelerators[1]. In 
this paper, we introduce the present status of researching 
longitudinal microwave instability, and the subject of 
longitudinal microwave instability of a bunched beam in 
a circular accelerator is systematically studied with 
perturbation approach. 
  Mode coupling theory, which is the most important 
theory to solve the beam instability, was introduced in 
70’s by F. Sacherer in CERN[2], who built the famous 
Sacherer integral eqution. Based on the mode coupling 
theory,  A. Chao in SLAC introduced the scaling law. In 
1990, Yokoya and Oide of KEK considered that the 
potential well distortion in the beam stationary 
distribution can not be omitted[3][4].  
  In this paper the Fokker-Planck equation is used to 
describe the beam distribution. The stationary solution of 
the equation， using action-angle variable ( )φ,J ，the 
matrix form which in term of generalized Laguerre 
polynomials and power series are partially derived from 
linearized Fokker-Planck equation including potential 
well distortion. 
  In section 2, we introduce the status of researching 
longitudinal instability. In section 3, we derive the 
density distribution equation for synchrotron motion 
based on the equation of single particle motion. In 
section 4, we try to solve the equation including the 
potential well distortion. Generally the stochastic 
equation is very complicated, it is hard to get the 
analytical solution, so we have to use numerical 
simulation method. Conclusions are given in section 5. 

2  RESEARCH STATUS 
  In 60’s, Vlasov equation, which describes the beam 
distribution in phase space, was firstly introduced to the 
theory of coast beam collective instability. In 70’s, F. 
Scherer developed the theory of bunch instability 
systematically. But the new theory and method are 
needed to explain the inside mechanism, especially for 
the new characteristic of instability, such as sawtooth 
instability etc[5][6].  
  The level of electron beam current in modern 
accelerators increases quickly years by years. The 
synchronous radiation effect and the stochastic quantum 
excitation effect begin to affect the beam dynamics and 
lead to beam instability. The beam-environment, 
including the radiation damping and quantum excitation, 
is a non Hamilton system, and a nonlinear system[7]. To 
research this system helps us to understand the inherence 
of instability. So the Fokker-Planck equation has been 
used more and more widely. 
  People use different expansion methods to establish 
the synchrotron modes[8][9], but there are several 
problems to be solved, for example, the convergence of 
various polynomials. Although the effect of potential 
well distortion has been included in the recent years, the 
mechanism of the instability can not been completely 
discovered, either.  
  Also people try other methods to solve the 
Fokker-Planck equation, like the moments expansion[10], 
direct numerous calculation of the equation[11], etc. 

3  FOKKER-PLANCK EQUATION 
  We derive the Fokker-Planck equation of longitudinal 
beam distribution. The complete equations of 
longitudinal single particle motion are: 
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In the case of small amplitude of synchrotron motion, 
these equations are simplified to: 
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  In above five equations s means path of the particle, 
and δ is energy spread, η slippage factor, α 
momentum compaction factor, β relativistic factor, γ  
relativistic factor, sω  synchrotron angular frequency, 
c  light velocity, z position relative to the synchronous 
particle, sτ damping coefficient, ( )zV  wake potential, 
C  circumference of accelerator, E∆  energy derivation, 

0E  energy of synchronous particle, ( )sΓ  stochastic 
function denoting the effect of quantum emission due to 
synchrotron radiation. 
  The equations of particle motion are typical two 
dimension Langevin equations. We can derive 
Fokker-Planck equation by the transition formula from 
Langevin equations: 
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where ψ is beam distribution function, D  is a 

diffusion constant. If the beam damp is large enough, 

the right side of equation can be omitted. Then the 

Fokker-Planck equation becomes to Vlasov equation. 

4  SOLUTION OF FOKKER-PLANCK 
EQUATION 

4.1 Stationary Solution 

  If we neglect the wake field force eV due to the 
self-fields, the stationary solution can be found as: 
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Here zσ  is rms bunch length, δσ is energy spread. 
C ′ is a normalization constant given by 

( )∫ = Nedzdz δδψ ,0 .                      (9) 

N is the number of electrons in a bunch. It is obvious 
that the stationary distribution of beam is bi-Gaussian 
form. 

  According to Yokoya and Oide’s theory, the effect of 

potential well distortion can not be omitted. The wake 

potential )(zV  in equation (6) is composed of two parts, 

)(0 zV is self-consistent with 0ψ  is the stationary 

distribution of the beam, and ( )szV ,1  is self-consistent 

with the perturbation distribution )exp(1 csiΩ−ψ , Ω  

is mode frequency. So )(zV  can be written by 
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ρ is the longitudinal density of beam. By considering 

the multiple turns effect and property of the longitudinal 

wake field ( ) 00//
0 =>zW , equation (12) can be 

expressed by use of the longitudinal coupling 

impedance //
0Z by: 
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Substituting equation (10), (11) into equation (6) we get 

another stationary solution including the potential well 

distortion, called Haïssinski equation: 
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(14) 
C ′′ In equation (14) is the new nornalization constant. 
The information of the wake field is included in second 
exponential function in equation (10). We can only get 
the solution by the numerical method. 

4.2 Perturbation Solution 

  In order to obtain the perturbation solution we 
decompose the distribution ψ into a stationary part and 
perturbed part as: 
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0ψ in Eq. (11) is the solution of Eq. (13). 
  In section 2 we learn some different ways to expand 
the distribution function ψ . Now we select the power 
series and Laguerre polynomial expansion in the 
action-angle coordinate system, 
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( )rL k are generalized Laguerre polynomials, 
( )rf l

k satisfy an orthogonality relation, 
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  After substituting Eq. (14)-Eq. (19) into Eq. (6), Eq. (6) 
is transformed into a matrix equation. By computing the 
eigenvalue we can get the current threshold value and 
calculate the mode frequency. The study is on the way 
continuously. 

5  CONCLUSION 
  Based on the mode coupling theory, different methods 
have been used on the Fokker-Planck equation. The 
polynomials expansion is the traditional one[12]. We 
introduce the research status of the equation, and one of 
the methods including the potential well distortion, but 
the computation is not involved in this paper. Our work 
will focus on the convergence of the Laguerre 
polynomial expanding the Fokker-Plank equation which 
including the potential well distortion, and try to find 
new methods to solve this equation. Also we hope to 
calculate the threshold current of BEPC more accurately 
by Fokker-Planck equation. These works are in progress. 
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